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Abstract. Remmel and Whitney provided an algorithmic procedure for determining
the Littlewood-Richardson coefficients that appear in the Schur function expansion of
a product of Schur functions. Haglund et al. introduced the quasisymmetric Schur
functions as a basis for QSym. This paper adapts Remmel and Whitney’s approach in
order to determine the coefficients that appear in the quasisymmetric Schur function
expansion of the product of a quasisymmetric Schur function and a (symmetric) Schur
function.

Résumé. Remmel et Whitney ont fourni une procédure algorithmique pour déter-
miner les coefficients de Littlewood-Richardson qui apparaissent dans l’expansion de
fonction de Schur d’un produit de fonctions de Schur. Haglund et al. a introduit
les fonctions de Schur quasi-symétriques comme base de QSym. Cet article adapte
l’approche de Remmel et Whitney afin de déterminer les coefficients qui apparaissent
dans l’expansion de la fonction de Schur quasi-symétrique du produit d’une fonction
de Schur quasi-symétrique et d’une fonction de Schur.
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1 Introduction

The Littlewood-Richardson rule for computing the coefficients of the Schur functions
appearing in the Schur expansion of the product of two Schur functions is a classical
result in algebraic combinatorics. The traditional definition of the Littlewood-Richardson
coefficients is the number of skew tableaux of a given content whose reading word is
a lattice word. In [7] a set of standard Young tableaux is defined which can be used
to compute the Littlewood-Richardson coefficients that arise in the Schur expansion of
the product of two Schur functions. The set O(λ ∗ µ) described in [7] can be generated
by creating a tree of tableaux with certain properties where the leaves of the tree are
precisely the elements in O(λ ∗ µ).

Recently several quasisymmetric analogues of the Schur functions have been intro-
duced [3, 6]. These quasisymmetric Schur functions are a refinement of the Schur func-
tion and have many properties similar to Schur functions. However, the product of two
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quasisymmetric Schur functions does not generally expand positively in the quasisym-
metric Schur basis. The purpose of this paper is to extend the Remmel-Whitney rule to
the product of a quasisymmetric Schur function and a (symmetric) Schur function. This
product does expand positively in the quasisymmetric Schur basis and has Littlewood-
Richardson coefficients that count analogous objects to those in the symmetric setting,
however, the Littlewood-Richardson composition tableaux are difficult to construct, with
several conditions on the reading word and relative ordering of entries in triples of cells
[2, 4]. Thus, this Remmel-Whitney rule is more straightforward to use when computing
products. A special case of this rule, CSα · s(1), was established in [1]. Future work will
involve extending the rule to products of two quasisymmetric Schur functions.

2 Background

In this paper we use the traditional (symmetric) Schur functions, the column-strict Young
quasisymmetric Schur functions, and the row-strict Young quasisymmetric Schur func-
tions. For a full treatment of the properties of quasisymmetric Schur functions see [2, 3,
4, 5]. Here we give the combinatorial definitions and a brief overview of each function.

2.1 Partitions and Schur functions

Let n be a positive integer. Then λ = (λ1, . . . , λk) is a partition of n, denoted λ ` n
if λ1 ≥ λ2 ≥ · · · ≥ λk > 0 and ∑i λi = n. The diagram of λ, denoted dg(λ), is the
collection of left-justified boxes with λi boxes in row i, where row 1 is the bottom row,
following the French convention. A semi-standard Young tableau (SSYT) of shape λ is
a placement of positive integers in dg(λ) that is weakly increasing left to right along
rows and strictly increasing up columns as seen in Figure 1. The content monomial of a
semi-standard Young tableau T is xT = ∏i xci

i where ci is the number of times i appears
in T. Let SSYT(λ) denote the set of all semi-standard Young tableaux of shape λ. We
can now define the Schur functions, sλ, by

sλ = ∑
T∈SSYT(λ)

xT.

For example, restricting to the variables x1, x2, x3, we can compute s(2,1)(x1, x2, x3) =

x2
1x2 + x1x2

2 + x2
1x3 + x1x2

3 + x2
2x3 + x2x2

3 + 2x1x2x3.

2.2 Compositions and quasisymmetric Schur functions

Given a positive integer n, a (strong) composition of n is a sequence α = (α1, α2, . . . , αk)
with αi > 0 for all i and ∑i αi = n. A weak composition allows for parts of size 0. As with
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T = 3
2 2 3 4
1 1 1 2 2 4

Figure 1: A semi-standard tableau of shape (6, 4, 1) with content monomial xT =

x3
1x4

2x2
3x2

4.

3 3
2 2
1

3 3
2 4
1

3 4
2 2
1

4 4
2 2
1

4 4
2 3
1

4 4
3 3
1

4 4
3 3
2

Figure 2: The elements in SSYCT((1, 2, 2)) restricted to entries from {1, 2, 3, 4}.

partitions, the diagram of α, denoted dg(α), is the collection of left-justified boxes with
αi boxes in row i, the ith row from the bottom, in the French convention.

A filling T of the diagram of α is a semi-standard Young (column-strict) composition
tableau (SSYCT) of shape α = (α1, α2, . . . , αn) if

1. the first column of T is strictly increasing from bottom to top,

2. each row of T weakly increases from left to right, and

3. T satisfies the column-strict triple rule: Let m = max{αi}. Then for all 1 ≤ i < j ≤ n
and 1 ≤ k < m, if T(i, k + 1) 6= ∞ and T(i, k + 1) ≥ T(j, k), then T(i, k + 1) >
T(j, k + 1), assuming the entry in any cell not in α is ∞. Note that T(i, k) indicates
the entry in the ith row and kth column of α.

Denote the set of semi-standard composition tableaux of shape α by SSYCT(α). Then the
Young quasisymmetric Schur function is defined

CSα = ∑
T∈SSYCT(α)

xT.

The semi-standard composition tableaux in Figure 2 yields CS (1,2,2)(x1, x2, x3, x4) =

x1x2
2x2

3 + x1x2x2
3x4 + x1x2

2x3x4 + x1x2
2x2

4 + x1x2x3x2
4 + x1x2

3x2
4 + x2x2

3x2
4.

Similarly, a filling F of the diagram of α is a semi-standard Young row-strict composition
tableau (SSYRT) of shape α = (α1, α2, . . . , αn) if

1. the first column of F is weakly increasing from bottom to top,

2. each row of F strictly increases from left to right, and



4 Elizabeth Niese
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1
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4
2 4
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1

3
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1 2
1
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Figure 3: The elements in SSYRT((1, 2, 1)) restricted to entries from {1, 2, 3, 4}.

3. F satisfies the row-strict triple rule: Let m = max{αi}. Then for all 1 ≤ i < j ≤ n and
1 ≤ k < m, if T(i, k + 1) 6= ∞ and T(i, k + 1) > T(j, k), then T(i, k + 1) ≥ T(j, k + 1),
assuming the entry in any cell not in α is ∞.

Denote the set of semi-standard row-strict composition tableaux of shape α by SSYRT(α).
The the Young row-strict quasisymmetric Schur function is defined

RSα = ∑
F∈SSYRT(α)

xF.

From the SSYRT in Figure 3 we see that

RS (1,2,1)(x1, x2, x3, x4) = x1x2x2
3 + x2

2x2
3 + x1x2x3x4 + x1x2x2

4 + x2
2x3x4 + x2

2x2
4

+ x2
1x2x3 + x2

1x2
3 + x2

1x2x4 + x2
1x3x4 + x2

1x2
4 + x1x3x2

4 + x2x3x2
4 + x2

3x2
4 + x2

1x2
2.

Both the Young quasisymmetric Schur functions and the Young row-strict quasisym-
metric Schur functions refine the Schur functions [3, 5, 6]. That is,

sλ = ∑
α:λ(α)=λ

CSα = ∑
β:λ(β)=λ′

RSβ

where λ(α) denotes the partition obtained by listing the parts of α in weakly decreasing
order.

3 Littlewood-Richardson rules

Since both the Young quasisymmetric Schur functions and Young row-strict quasisym-
metric Schur functions provide a basis for the vector space of quasisymmetric function
[3, 5], it is natural to want a quasisymmetric analogue of the Littlewood-Richardson rule
for the product of two Schur functions. While a combinatorial rule for the product of
two quasisymmetric Schur functions has remained elusive, a rule for the product of a
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∗ ∗
∗

∗ ∗

∗ ∗

∗

∗ ∗

∗ ∗
∗

∗ ∗

Figure 4: Diagrams of shape (3, 2, 2, 4, 2)/(2, 1, 2) with removed cells indicated by ∗.

quasisymmetric Schur function and a (symmetric) Schur function exists for both types
of quasisymmetric Schur functions. We briefly outline these rules and refer the reader
to [2, 4, 5] for a more comprehensive treatment.

We start by rewriting the Littlewood-Richardson rule for quasisymmetric Schur func-
tions given in [4] for reverse composition tableaux in our context for semi-standard
Young composition tableaux.

Definition 3.1. Given compositions α, β, let γ be a weak composition such that γi ≤ βi
for each part of γ and γ+ = α where γ+ is γ with all zero parts removed. Then a skew
composition diagram of shape β//γ is said to be of shape β/α. More than one γ may
satisfy this requirement as seen in Figure 4. A tableau V of shape β/α is a Littlewood-
Richardson composition tableau when

1. The cells in α are filled with zeros, as is an additional column, column 0, to the
left of the first column of β. Where there are multiple 0’s in the same column, we
consider the 0’s to be increasing from top to bottom.

2. A triple of cells in rows i and j, i < j, is a Type A triple if βi ≤ β j with the cells
arranged as shown in Figure 5, and is a Type B triple if βi > β j with the cells ar-
ranged as shown in Figure 5. All Type A and B triples are inversion triples, meaning
c ≤ b < a or a < c ≤ b. Note that this condition implies each row is weakly
increasing from left to right.

3. The column reading word wcol(T) obtained by reading down each column of V start-
ing with the rightmost column (omitting all 0’s) must be a lattice word, a word
w1w2 . . . wn where, for each i < `(µ) and each prefix w1w2 . . . wj with j ≤ n the
number of i’s in the prefix is weakly greater than the number of i + 1’s in the
prefix.

We denote by LR(β/α, λ) the set of Littlewood-Richardson composition tableaux of
shape β/α with content λ. and let Bβ

α,λ = |LR(β/α, λ)|.
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c b

a

a

c b

Type A Type B

Figure 5: The two types of triples between rows i and j, i < j, in a tableau of shape β.
When βi ≤ β j consider Type A triples. When βi > β j consider Type B triples.

Theorem 3.2 ([4]). Let λ be a partition and α a composition. Then

CSα · sλ = ∑
β

Bβ
α,λCSβ

where the sum is over all compositions β such that |β/α| = |λ|.

The rule for Young row-strict quasisymmetric Schur functions is similar, but the col-
umn reading word is formed by reading up each column starting with the leftmost
column. The triple rule is also adjusted to accommodate the row-strict condition.

Definition 3.3. Let α and β be compositions. A Littlewood-Richardson skew row-strict com-
position tableau F of shape β/α is a filling of a diagram of shape β//γ where γ is a weak
composition with γ ⊆ β and γ+ = α, such that

1. The cells in γ are filled with 0’s, and there is a column 0 which is also filled with
0’s. We consider 0’s to strictly increase across rows left to right.

2. Each triple (type A or B) must satisfy c < b ≤ a or a ≤ c < b, including triples
containing cells in column 0. Note that satisfying the triple condition implies the
rows of F are strictly increasing (omitting 0’s).

3. The row-strict column reading word, rwcol(F), obtained by reading up each col-
umn, omitting 0’s, starting with the leftmost column, is a lattice word with content
λ.

Denote the set of all such tableaux by RSLR(β/α, λ) and let Dβ
α,λ = |RSLR(β/α, λ)|.

Theorem 3.4 ([5]). Let λ be a partition and α a composition. Then

RSα · sλ = ∑
β

Dβ
α,λRSβ

where the sum is over all compositions β such that |β/α| = |λ|.
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10
9 8
7 6

5 4
3
2 1

Figure 6: The composition tableau S(2,1,2)∗(2,2,1).

4 Remmel-Whitney rules

For both types of quasisymmetric Schur functions a special composition tableau will
figure prominently in the statement of the Remmel-Whitney rules.

Definition 4.1. Let α = (α1, . . . , αk) be a (strong) composition and λ = (λ1, . . . , λm) be
a partition. Then define α ∗ λ := (λ1 + α1, λ1 + α2, . . . , λ1 + αk, λ1, λ2, . . . , λm)/(λ1)

k and
define Sα∗λ to be the filling of α ∗ λ obtained by placing the labels 1, 2, . . . , |α|+ |λ| into
the diagram of α ∗ λ in reverse reading order, that is, from right to left across rows starting
with the bottom row as seen in Figure 6.

4.1 Rule for column-strict quasisymmetric Schur functions

Denote by T≤x the restriction of T to labels less than or equal to x. We define a set
QO(α ∗ λ) to be the set of composition fillings T of any composition shape β with
|β| = |α|+ |λ| satisfying

1. the filling T≤|α| has shape γ where γ+ = α and the entries 1, 2, . . . , |α| occur in
reading order,

2. for each i, in T≤i the length of the row containing i is not equal to the length of any
row below it,

3. if i and i + 1 are in the same row of Sα∗λ then i + 1 occurs strictly to the right of i
in T, and

4. if i and y, y < i, are in the same column of Sα∗λ, then i appears in a column weakly
left of the column containing y in T.

To completely enumerate the elements of QO(α ∗ λ) it is convenient to use the condi-
tions above to, label by label, create a tree with all possible placements of 1, . . . , |α|+ |λ|:

1. place the entries 1, . . . , |α| into the diagram of α in reading order (left to right,
starting with the top row),
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2. for each i, |α|+ 1 ≤ i ≤ |α|+ |λ|, once i− 1 has been placed, follow the rules for
the placement of i into the tableau:

(a) If i− 1 and i are in the same row of Sα∗λ, i must be placed in a column strictly
to the right of the column containing i− 1 such that once i is placed at the end
of a row, there is no row of the same length below it.

(b) If i is in the same column as y, y < i, in Sα∗λ, then i must be placed in a column
weakly left of y such that once i is placed at the end of a row, there is no row
of the same length below it. In this case, allow for a row of length 0 between
every pair of rows in the filling and i can be placed in this row, provided there
is no row of length 1 below it.

3. keep track of each possible placement of i by using a tree, as seen in Figure 7,

4. if no placement of i is possible, mark as a dead end and disregard, and

5. once |α|+ |λ| has been placed, the elements of QO(α ∗ λ) are the leaves of the tree
which are not dead ends.

Example 4.2. For α = (1, 2, 1) and λ = (1, 1), we get

Sα∗λ = 6
5

4
3 2
1

,

and the elements of QO(α ∗ λ) are the leaves in the tree in Figure 7. Then CS (1,2,1)s(1,1) =
CS (1,1,3,1) + CS (1,3,2) + CS (2,3,1) + CS (2,2,1,1) + CS (2,1,2,1) + CS (1,2,2,1) + CS (1,1,1,2,1).

Theorem 4.3. For α, β compositions and λ a partition, let Aβ
α,λ = |QO(α ∗ λ, β)| where

QO(α ∗ λ, β) is the subset of QO(α ∗ λ) of fillings with shape β. Then Aβ
α,λ = Bβ

α,λ and

CSα(X)sλ(X) = ∑
β

Aβ
α,λCSβ(X).

Proof. We define a function f : QO(α ∗ λ, β) → LR(β/α, λ) by replacing each label in
T ∈ QO(α ∗λ, β) by 0 if i is in α in Sα∗λ and by j if i is in λj in Sα∗λ as seen in Example 4.4.

Let T ∈ QO(α ∗ λ, β). By construction f (T) has shape β/α and content λ, and rows
weakly increase from left to right. Since labels in the same row of Sα∗λ cannot be in the
same column of T, there are no repeated entries in columns in f (T), except possibly 0’s.
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Figure 7: The tree generating elements of QO((1, 2, 1) ∗ (1, 1)).

Consider a type A triple in f (T). The triple has entries a, b, c and the corresponding
triple in T has entries a′, b′, c′ as seen in Figure 5 where either a or b is the largest entry in
the triple in f (T). Suppose first that a is the largest entry. Since a and b are in the same
column, a > b and since the rows of f (T) are weakly increasing, we have a > b ≥ c, so
the triple condition is satisfied in this case. Suppose next that b > a. Then in T, b′ > a′

Thus, in T≤b′ the row containing b′ is the same length as the row containing a′, which is
impossible since T ∈ QO(α ∗ λ, β). A similar argument shows that all type B triples in
f (T) satisfy the triple condition.

Finally, we must show that wcol( f (T)) is a lattice word. Let 1 ≤ i < `(λ). In T, entries
x > y which are in the same column of Sα∗λ appear with x weakly left of y. So in T it
is impossible to have more entries from row i + 1 of λ in Sα∗λ than row i when reading
in column reading order. Thus, it is not possible to have more i + 1’s in a prefix than i’s.
Therefore f (T) ∈ LR(β/α, λ).

Define g : LR(β/α, λ) → QO(α ∗ λ, β) by g(F) is the composition filling obtained by
replacing each i in F, 1 ≤ i ≤ `(λ), from left to right by the entries in row i of λ in Sα∗λ,
smallest entry to largest and replacing 0’s from left to right starting in the top row with
1, 2, . . . , |α|.

Let F ∈ LR(β/α, λ). We show that g(F) ∈ QO(α ∗ λ, β). First note g(F)≤|α| has shape
γ where γ+ = α since F has shape β/α. The entries in g(F)≤|α| occur in reading order
by definition of g.
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Sα∗λ = 8 7
6 5

4
3 2
1

T = 1
2 3 6
4 8
5
7

f (T) = 0
0 0 1
0 2
1
2

Figure 8: The result of f when applied to the tableau T ∈ QO((1, 2, 1) ∗ (2, 2)).

Next, suppose there is a an i in row j such that there exists a row k, k < j, with
the same length as row j in g(F)≤i. Suppose i occurs in column x in g(F). Then in F,
F(j, x) > F(k, x), since otherwise, in g(F)≤i, cell (k, x) would be empty. Further, in F
row j must be longer than row k, otherwise F(k, x + 1) < F(j, x) since F ∈ LR(β/α, λ)
and thus satisfies the triple rules. If F(k, x + 1) < F(j, x), then there is an entry in cell
(k, x + 1) in g(F)≤i and row k is longer than row j. Since row j is longer than row k,
the entries F(j, x− 1), F(j, x), and F(k, x) form a type A triple. Thus F(j, x− 1) > F(k, x)
since F(j, x) > F(k, x). Further, F(j, x − 1) > F(k, x − 1), and thus there exists some
y < x, possibly y = 1, such that F(j, y) > F(k, y) ≥ F(j, y− 1), violating the type A triple
rule. Thus, in g(F)≤i there must be no rows below the row containing i of the same
length.

Now suppose i and i + 1 occur in the same row of Sα∗λ for some i > |α|. Then, in
g(F)≤i+1, i + 1 occurs strictly to the right of i since in F the corresponding cells have the
same label and hence cannot appear in the same column of β.

Next suppose i and j occur in the same column of Sα∗λ with j < i. Suppose i appears
in a column strictly right of the column containing j in g(F). If i is in row x of λ in
Sα∗λ and j is in row m with both entries in column z, then there are at most z − 1
occurrences of m in wcol(F) preceding the zth occurrence of x. But this is impossible
since wcol(F) is a lattice word. Thus i appears in a column weakly left of j in g(F).
Therefore, g(F) ∈ QO(α ∗ λ, β).

We show that (g ◦ f )(T) = T for all T ∈ QO(α ∗ λ, β) and ( f ◦ g)(F) = F for all
F ∈ LR(β/α, λ). Given T ∈ QO(α ∗ λ, β), note that entries in T corresponding to the
entries in row i in λ in Sα∗λ are in increasing order from left to right in T with no two
entries in the same row of λ occurring in the same column of T. This is sufficient to
establish that (g ◦ f )(T) = T. On the other hand, given F ∈ LR(β/α, λ), the labels in
row i of λ in Sα∗λ are arranged in g(F) in increasing order from left to right in the cells
of F labeled with i. In ( f ◦ g)(F), the labels of g(F) in row i of λ in Sα∗λ are replaced by
i and thus ( f ◦ g)(F) = F. Therefore, g = f−1 and Aβ

α,λ = Bβ
α,λ.

Example 4.4. When α = (1, 2, 1), λ = (2, 2), then we see the result of applying f to
T ∈ QO(α ∗ λ) in Figure 8.



Remmel-Whitney rule 11

1
2 3
4

1
2 3 5
4

1
2 3 5 6
4

1
2 3
4
5

1
2 3 6
4
5

1
2 3
4 6
5

1
2 3
4
5 6

1
2 3
4 5

1
2 3
4 5 6

1
2 3 6
4 5

Figure 9: The tree generating elements of RO((1, 2, 1) ∗ (1, 1))

4.2 Rule for row-strict quasisymmetric Schur functions

We now present an analogous rule for Rα · sλ using row-strict composition fillings and
row-strict Littlewood-Richardson composition tableaux.

Define the set RO(α ∗ λ) to be the set of composition fillings T satisfying

1. the filling T≤|α| has shape γ where γ+ = α and the entries 1, 2, . . . , |α| occur in
reading order,

2. for each i, the length of the row containing i in T≤i is not equal to the length of any
row below it,

3. if i and i + 1 are in the same row in Sα∗λ then i + 1 is weakly left of i in T, and

4. if i > j and i, j are in the same column of Sα∗λ then i is strictly right of j in T.

As before, these conditions can easily be used to construct a tree whose leaves are the
members of RO(α ∗ λ) as seen in Figure 9.

Theorem 4.5. Let λ be a partition and α a composition. Let RO(α ∗ λ, β) be the subset of
RO(α ∗ λ) consisting of only those fillings of shape β. Let Cβ

α,λ = |RO(α ∗ λ, β)|. Then

Cβ
α,λ = Dβ

α,λ and

RSα · sλ = ∑
β

Cβ
α,λRSβ.
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The proof of Theorem 4.5 is similar to that of Theorem 4.3 and we will state the bijec-
tions while omitting the details. Define h : RO(α ∗ λ, β) → RSLR(β/α, λ) by replacing
each label in T ∈ RO(α ∗ λ, β) as follows. If i is in α in Sα∗λ, place a 0 in h(T) in the
location of i in T. If i is in row k of λ in Sα∗λ, place a k in h(T) in the location of i
in T. Similarly, we define p : RSLR(β/α, λ) → RO(α ∗ λ, β) by replacing the 0’s in
F ∈ RSLR(β/α, λ) from left to right starting with the top row with the labels 1, 2, . . . , |α|
and for 1 ≤ i ≤ `(λ) replace all i’s from right to left, down each column, with the labels
in row i of λ in Sα∗λ starting from the smallest label to the largest. It is straightforward
to show that h and p are inverse functions.
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